Sentinode X - Satellite Telemetry Simulator

Deshad Senevirathne
deshadsenevirathne@gmail.com
Independent Researcher
Colombo, Sri Lanka

Abstract

Sentinode X framework is a Systematic, multi-tiered software archi-
tecture designed for precise simulation and visualization of satellite
mission dynamics. The framework is built on a microservices pat-
tern, ensuring scalability, robust decoupling and maintainability
across its seperate functional layers. The Simulation Core is scripted
in Python, utilizing specialized open source libraries to manage
orbital propagation, including environmental effects and hardware
modeling. A critical feature is the integration of a Finite State Ma-
chine (FSM) that operates on sensor data which are bias simulated
by Neural Networks. The system’s integrity is managed by a Node.js
API Gateway which serves as the single entry point. The gateway
manages Cross-Origin Resource Sharing (CORS), unified error han-
dling, and essential data services, including the transformation of
large telemetry logs into exportable CSV formats. This architecture
supports both analytical batch processing and the emulation of a
real-time telemetry stream for the client dashboard. The complete
environment is deployed using Docker Compose, with an Nginx
reverse proxy providing a unified entry and intelligently routing
requests to the corresponding backend services. This containerized
strategy guarantees portability and repeatable deployment across
diverse operational environments. The resulting system is a fully
functional prototype test framework for validating satellite mission
parameters and autonomous control system performance.

Keywords

node.js, poliastro, sentinode, simulation, telemetry

1 Introduction

Successful operations of satellite missions fundamentally relies
on the rigorous testing and validation of Ground Control Soft-
ware (GCS), command pipelines and mission planning systems and
architectures. It requires high-precision telemetry data streams
that accurately reflect orbital mechanics, sensor inputs and space-
craft state vectors. Present industry practices often rely on large,
monolithic simulation tools which, while accurate, present signifi-
cant challenges in modern, distributed computing environments[3].
Traditional GCS simulators frequently built using complex desk-
top based environments like Systems Tool Kit (STK), legacy MAT-
LAB/Simulink models or compiled C++ physical engines are tightly
coupled[2]. This comes with the difficulty of integration with ephe-
meral, web based dashboards, cumbersome to update and fragile
to deploy across diverse cloud infrastructures (e.g., containerized
Kubernates or EC2). Furthermore they often suffer from inherent
instability when faced with continuous, long-duration data requests
over standard network protocols (HTTP/REST). Without a protec-
tive API layer, the simulation’s long processing time often triggers
mandatory network timeouts at the gateway or client level, lead-
ing to an inconsistent and unreliable user expierience where the

simulation prematurely halts[4]. This presents a major obstacle to
using these tools effectively for front end development, operator
training, and continuous integration testing.

Sentinode X is a satellite telemetry simulator specifically de-
signed to address both architectural and stability challenges through
a containerized, three-tier microservices appro The system com-
prises a decoupled computational backend (Python/FastAPI), a rout-
ing and stability layer (Node.js/Express), and a modern, responsive
web frontend. The core technical contribution of Sentinode X lies
in the design of the Node.js API Gateway as a dedicated stabil-
ity mechanism. This gateway implements a mandatory, extended
network timeout for all long running computational requests and
utilizes a data chunking strategy which ensures that the heavy
simulation workload can execute fully without triggering network
disconnection or flooding client resources.

2 System Architecture

2.1 Architecture Overview

The system adheres to an API Gateway pattern, effectively decou-
pling the Frontend from the computational backend. This isola-
tion allows services to be scaled and maintained independently.
The three components are: Computational Backend (/python-sim-
service/), API Gateway/Stability Layer (/node-api-gateway/), and
Client Interface (/frontend/). The Node.js API Gateway is the sole
external entry point, ensuring all stability mechanisms are enforced
at the network boundary.

2.2 Python Simulation Service

The Python Simulation Service (/python-sim-service/) forms the
analytical engine of the entire web application. Its primary respon-
sibility is to generate realistic satellite telemetry data based on user
defined orbital parameters. It is built on the FastAPI framework,
and it provides a robust and asynchronous API endpoint that the
Node.js API Gateway then utilizes to initiate and retrieve simulation
results.

The workflow within this service is modular in nature, separat-
ing concerns between API exposure, simulation orchestration, and
the underlying scientific models. When a request for a simulation
arrives via its main API endpoint, the service first validates the
input parameters. It then delegates the actual time series simulation
generation to a dedicated driver script, which in turn leverages
a suite of object oriented models for orbital mechanics, satellite
state management, and event handling, resulting a detailed log of
simulated telemetry points over the specified duration, which is
then structured as a JSON response and returned to the API Gate-
way. This design ensures that complex computational tasks are
encapsulated and efficiently handled.

Deshad Senevirathne

Frontend
(Dashboard)

Simulator Models -
Orbital Dynamics
and Sensor Suite

Node.js API Gateway
(Stability Layer, Rout-
ing, CORS, Timeout)

Satellite FSM | Simulator -
and Logic | Orchestrator

| Python FastAPI Service
| (Simulation Execution)

g

Figure 1: Sentinode X Simulation Architecture: The right box (Frontend, Node.js, FastAPI) handles user requests, while the left
box (Simulator, Models, Satellite FSM) handles the computational core.

2.2.1 Simulation Engine

The foundation of the high-fidelity telemetry generation lies in a ro-
bust orbital mechanics framework, encapsulated within the primary
OrbitSimulator class. This component is responsible for defining,
propagating, and managing the spacecraft’s trajectory, leveraging
open source astrodynamics libraries Poliastro[5] for orbital compu-
tations and Astropy[1] for precise time and unit management.

The initial orbital state of the simulated satellite is established
upon instantiation, requiring the definition of the mission epoch,
a desired altitude, and the orbital inclination. The OrbitSimulator
class leverages the poliastro library to model Keplerian orbits, pro-
viding a high-fidelity, yet computationally efficient, representation
of orbital mechanics for a Low Earth Orbit (LEO) satellite. The initial
orbit is defined using Classical Orbital Elements (COE), specifically
for a circular orbit: eccentricity e = 0. The initial state (position r and
velocity v) is computed via the Orbit.from_classical method,
which takes the gravitational parameter of Earth y (from Earth.k),
the semi-major axis a, the eccentricity e, the inclination i, the Right
Ascension of the Ascending Node (RAAN) Q, the Argument of
Perigee w, and the True Anomaly v.

The semi-major axis a is derived directly from the user-specified
altitude h:

a:RE+h (1)

where Rp is the equatorial radius of the Earth (Earth.R). A cru-
cial initial condition is the True Anomaly v. By setting v = 90°,
the initial position vector r is placed such that its Z-component
(equatorial component perpendicular to the angular momentum
vector) is maximized. This corresponds to the point of maximum
latitude (equal to the inclination i) in the orbit. The initial COE are:

Orbital motion is propagated using the Keplerian two-body solu-
tion via self.orbit.propagate(tof). This assumes the satellite

Table 1: Initial Classical Orbital Elements (COE) for the Orbit

Element Symbol Value (Units)
Semi-Major Axis a Rg+h (km)
Eccentricity e 0 (unitless)
Inclination i igeg (deg)
RAAN Q 0 (deg)
Argument of Perigee 2] 0 (deg)

True Anomaly v 90 (deg)

is only affected by the central gravitational body (Earth) and is
described by the solution to the differential equation:
= _r% r (2)

where r is the position vector and r = ||r||. The step_simulation
function applies this propagation over discrete time steps (At = 5's).

To obtain the geographic coordinates (Latitude ¢ and Longitude
1), the Earth-Centered Inertial (ECI) position vector rgcy must be
converted to the Earth-Centered Earth-Fixed (ECEF) frame, rgcgr.
This transformation involves a rotation around the Z-axis by the
Greenwich Mean Sidereal Time (GMST) angle 6.

The ECEF position is given by:

rECEF = Rz (—06) rect ®3)

where R, (—6) is the negative rotation matrix about the Z-axis.

The approximate GMST in degrees is calculated using the Julian
Date (JD) and the time interval from the J2000 epoch (TyT):

0G = 100.46061837+36000.770053608 Tyr1+0.00038793 o, (deg)

Sentinode X - Satellite Telemetry Simulator

with

JD — 2451545.0

4
36525.0
The geographic coordinates are then computed from the ECEF

Tyt =
Cartesian vector rgcgr = [x, y, z]:

¢ = arcsin (—) , A = arctan 2(y, x) (5)
llrecerl

Longitude A is then normalized to the range [—180°, 180°].

Instantaneous maneuvers are applied using the apply_maneuver
method. A Delta-V (Av) impulse, represented by the vector Av, is
added to the current orbital velocity vector Veyrrent:

Vnew = Vcurrent + AV (6)

The new orbit is then computed from the updated state vectors
(1, Vnew) using self.orbit.apply_maneuver(Av). The class is
designed to automatically update the internal self.inclination
attribute post-maneuver.

The solve_lambert method computes the initial and final ve-
locity vectors (v, v1) required for a two-impulse transfer between
the current position r; and a target position ry over a specified
time-of-flight (TOF). This is achieved using the iterative algorithm
of Izzo (izzo.lambert), which solves the boundary value problem
defined by Lambert’s Theorem:

TOF = f(r1,12,v0, i) (7)

The UncertaintyPropagator class implements a two-pronged
approach—Monte Carlo (MC) sampling and Polynomial Chaos Ex-
pansion (PCE)—to model the effect of input uncertainties on the
mission’s output parameters.

Input uncertainties are defined by a dictionary of named pa-
rameters, each associated with a probability distribution (currently
Normal/Gaussian). For a parameter X with mean px and standard
deviation oy, the probability density function (PDF) is:

p(X) = (®)

1 1 (X - pux)2
exp [—=
oxV2r 2 ox
The orbital_period_model within the simulator defines the
two perturbation parameters: pos_perturb and vel_perturb, which

represent scaling factors applied to the nominal position r and ve-
locity v vectors:

Vperturbed = V * (1+6)

where §, and §, are the sampled values of pos_perturb and
vel_perturb, respectively. The output of the model is the resulting
perturbed orbital period Pperturbed-

The Monte Carlo (MC) simulation involves generating Ngamples
sets of input parameters by drawing random samples from the
defined distributions (sample_inputs). The model function f(-) is
then evaluated for each sample:

Tperturbed = T (1+6r),

Yie = f(Xe),
where Xj = [0, ., 0, k] is the k-th sample of input perturbations,
and Yy, is the corresponding perturbed orbital period.

k=1,..., Nsamples

The MC simulation provides the statistical moments of the out-
put:

Nisamp
ples
1

Mean(¥) = ——— Z Yy 9)
samples 3}

Nsampl
ples
1

StdDev(Y) = (Yk - Mean(?))z (10)

samples ~ 1 =
Polynomial Chaos Expansion (PCE) is used for surrogate model-
ing of the uncertainty propagation. For Gaussian input variables,
the expansion uses Hermite polynomials ¥;(£).
The standardized input variable ¢ is defined as:

X
ox

4 (11)

The model output Y is approximated as a finite-order expansion:

P
Y(X) ~ > i) (12)

i=0
where P is the total number of terms (determined by the PCE
order porder) ¢i are the unknown PCE coefficients, and ¥; (&) are
the multivariate Hermite basis polynomials. Since the current im-
plementation treats each input variable separately for fitting (due to
the use of pce_coeffs[name]), this is effectively a single-variable

PCE fit for each input:

Porder
Ix@=) af (13)
i=0

where £ are powers of the standardized variable, approximating
the Hermite polynomial basis.

The coefficients c; are determined by minimizing the least-squares
error between the MC outputs Y; and the basis matrix B evaluated
at the sampled standardized inputs &.:

c=(B'B)'BTY (14)

The basis matrix B is constructed as:

By = g]l@ k=1,..., Nsamples’ i=0,..., Porder

This surrogate model allows for rapid prediction of the output
Y for any new input perturbation ¢ without re-running the full
orbital dynamics model.

The Machine Learning (ML)-Enhanced Sensor Layer is crucial
for generating realistic telemetry data by modeling non-ideal sensor
behavior, specifically time-correlated drift and bias accumulation.
This layer is implemented by integrating a specialized Recurrent
Neural Network (RNN) module, DriftGRU, into each high-fidelity
sensor class.

The core innovation of the sensor layer is the DriftGRU module,
a minimalist implementation of a Gated Recurrent Unit (GRU) net-
work, which serves as a parametric model for simulating long-term
sensor degradation and drift.

2.2.2 GRU Architecture and Function

The GRU is chosen for its ability to model sequences and capture
dependencies over time, making it ideal for simulating bias that
evolves based on its previous state and internal memory.

The DriftGRU processes a sequence of length L = 1 at each
simulation step At:

h; = GRU(x¢, hs-1) (15)
where x; is the input (typically the current accumulated bias/-
drift), and h; is the hidden state (the network’s memory).
The output layer is a simple linear transformation that maps the
hidden state h; to the bias increment Ad;:

Ad¢ = Wiinear bt + blinear (16)

The DriftGRU is critically initialized with its linear layer weights
and biases set near zero:

Winear ® 0, Dlinear ~ 0 (17)
This initialization prevents the accumulation of an explosive,
non-physical drift when the model is untrained. When used in a
larger ML pipeline, the network can be trained to learn realistic,
time-correlated degradation patterns from historical or synthetic
failure data.
The ADCS sensors model both deterministic bias and instanta-
neous Gaussian noise for a comprehensive representation of mea-
surement error.

2.2.3 Star Tracker (StarTrackerML)

The Star Tracker models errors in the spacecraft’s attitude quater-
nion qtrye. The measurement error is treated as a small rotation,

dq, such that

Qmeasured = 69 ® qtrue (18)

The error rotation dq is derived from an error vector eyec (in

radians), which is the sum of the accumulated bias b and the instan-
taneous Gaussian noise 7,;se:

evec = b+ Mpoise (19)
The DriftGRU takes the previous bias b;—1 as input to predict
the change in bias Ad;:

bt = btfl + Adt (20)
The Gaussian noise 1., is modeled with oyise = 0.01° (con-
verted to radians).

2.2.4 Sun Sensor (SunSensorML)

The Sun Sensor measures the true sun vector sirye. The error mecha-
nism applies a small error rotation Rery derived from an error vector
€vec, similar to the Star Tracker:

Smeasured = Rerr (€vec) Strue (21)

The bias b represents a persistent misalignment/miscalibration,
which drifts based on the DriftGRU output. The noise 1,,,;. has

_ o
Onoise = 0.2°.

Deshad Senevirathne

2.2.5 Magnetometer (MagnetometerML)

The Magnetometer measures the local magnetic field vector Birye.
The errors are modeled as a simple vector sum:

Bneasured = Btrue + b+ Mnoise (22)

Since the field is in Tesla (T), the bias and noise are also modeled

in T. The standard deviation for Gaussian noise is set to oppise =
50 nT.

2.2.6 GPS Receiver (GPSML)

The GPS sensor measures the spacecraft’s position rirye in meters.
The model simulates the degradation of the positioning solution
via a simple additive error vector eyec:

I'measured = Ttrue + b + Mpoice (23)
The bias b is a position offset vector that accumulates drift Ad;
from the DriftGRU. The Gaussian noise 1,,,;. has opojse = 0.5 m.

2.2.7 IR Temperature Sensor (IRSensorML)

The IR Sensor measures a scalar temperature Tiyye. This is the only
sensor with scalar input/output for the DriftGRU (Nj, = 1, Nout =

1):

Tieasured = Ttrue + b + Mnoise (24)

The scalar bias b accumulates drift based on b;_1, and the noise
Nnoise has oneise = 0.05. This simulates calibration drift in the
thermal measurement path.

The communication and power subsystems are modeled with a
simplified ML drift mechanism to simulate complex, coupled degra-
dation, providing realistic telemetry for the Finite State Machine
(ESM).

2.2.8 Communication Subsystem
(CommunicationSubsystem)

This model uses a simplified, hardcoded recurrence relation to
represent an internal "hidden state" h (simulating complex internal
drift):

hy =09 hyog +0.1- My (25)

This hidden state is then linearly mapped to output drifts for SNR,

FrequencyOffset, and PacketLoss. The final telemetry is the sum

of the base value, the mapped drift, and instantaneous Gaussian
noise.

2.2.9 Power Subsystem (PowerSubsystem)

The Power Subsystem model uses two independent DriftGRU mod-
ules to simulate measurement drift in key components:

e Solar Voltage Drift: DriftGRUg takes solar_voltage,_; as
input to model the drift in the solar panel’s voltage reading.
o Battery Voltage Drift: DriftGRUp takes battery_voltage,_;
as input to model the drift in the battery’s voltage sensor.
This structure allows for independent simulation of degradation

in two different electrical components, reflecting the complexity of
a real power system. The State of Charge (SoC) is crudely updated

Sentinode X - Satellite Telemetry Simulator

Table 2: DriftGRU Module Parameters

Parameter Symbol Description
Input Size N; Dimensionality of the bias vector (e.g., 3 for 3D vector sensors, 1 for scalar sensors).
Hidden Size Npjqden Internal memory dimension (default 16).

Output Size Nout

Dimensionality of the predicted drift Ad; (defaults to Njy).

based on the net current, allowing the FSM to trigger a LOW power
state if SoC < 0.3.

2.2.10 Finite State Machine (FSM) for Spacecraft
Command and Control

The Satellite Finite State Machine (FSM) is the core decision-making
logic of the spacecraft simulation, responsible for autonomously
managing operational modes based on the health status reported
by various subsystems. Implemented in the SatelliteFSM class,
this deterministic machine ensures mission integrity by enforcing
safe operating conditions in response to anomalies.

A FSM Architecture and Configuration

The FSM is defined entirely by a JSON configuration file (fsm_json),
which promotes modularity and allows for easy modification of
mission rules without altering the core logic. The key components
are:

o States: A set of discrete, mutually exclusive operational

modes (e.g., NOMINAL, SAFE_MODE, LOW_POWER, ANOM-

ALY).

e Subsystems: A registry of all critical spacecraft compo-
nents (e.g., Power, Thermal, Communication), each tracking
its current health status (e.g., OK, LOW, CRITICAL, FAIL).

o Transitions: A list of rules that dictate how the FSM moves
from a source state to a target state, conditional on the
current subsystem health.

B. Subsystem Status and Condition Evaluation

The update_subsystem_status method provides the crucial inter-
face for the sensor layer (via the OrbitSimulator.step_simulation
method) to feed health data into the FSM.

The FSM’s ability to trigger transitions relies on the _eval
_condition method, which parses status-check strings defined
in the JSON configuration. A condition string is structured as a
simple equality statement:

Subsystem.Attribute == ’TargetValue’

For example, the condition Power.status == ’LOW’ evaluates
to True only if the current status of the Power subsystem is LOW.

C. Transition Logic and Execution

The step method is the execution cycle of the FSM, invoked at every
simulation time step. It iterates through the defined transitions and
applies the following logic:

(1) Source State Match: Check if the transition’s from state
matches the current FSM state Scyrrent, or if the transition
is defined as an ANY state transition.

(2) Condition Checking: Evaluate the boolean result of the
transition’s condition set C.

e For standard transitions, all conditions must be met
(logical AND): C; ACo A ...

e For the special ANY state transition, the _check_condit-
ions logic allows the transition if any of the condi-
tions are met (logical OR), ensuring a rapid fail-safe
response.

(3) If both the source state and conditions are satisfied, the
FSM immediately transitions to the target state Starget and
breaks the loop, ensuring only one state change occurs per
step.

D. Mission Critical States
The FSM defines key states essential for mission robustness:

o NOMINAL: The default operating state where all systems
are healthy, and the payload is actively collecting data.

o SAFE_MODE: A critical recovery state, typically entered
when multiple systems (e.g., Power and Thermal) indicate
failure or near-failure. In this state, non-essential opera-
tions are shut down to conserve resources and stabilize the
spacecraft.

o ANOMALY: A terminal state entered via the ANY transition
rule if any subsystem reports an ANOMALY status. Once in
the ANOMALY state, the system is prevented from further
automated transitions, requiring ground intervention.

This FSM structure provides a highly modular and robust frame-
work for simulating the autonomous response capabilities of a satel-
lite to both environmental and internal failures, directly linking
low-level sensor telemetry to high-level mission operations.

2.2.11 The Simulation Driver:
run_realtime_simulation

The run_realtime_simulation function serves as the central or-
chestration layer, integrating the Orbital Dynamics Model (Orbit-
Simulator), the Machine Learning-Enhanced Sensor Layer, and
the Command and Control Logic (SatelliteFSM). This driver man-
ages the simulation timeline, initializes components, executes the
time-stepping loop, and logs the resulting telemetry.

A. Initialization and Configuration

The driver begins by setting up the necessary environment based
on user inputs for the simulation.
Orbital Initialization:

o The base altitude is subjected to a small, random pertur-
bation (+0.01 km) to introduce realistic variability in the
initial conditions.

e The simulation epoch is set to the system’s current UTC
time (Time.now() .utc), ensuring the orbit propagation is
grounded in real-world time.

e The OrbitSimulator is instantiated with the perturbed
altitude and user-specified inclination (default 51.6°).

FSM Initialization:

e The SatelliteFSMis initialized using the predefined FSM
_CONFIG JSON string, establishing the nominal operating
state and the rules of transition.

Sensor Reset:

e The entire sensor_suite (containing instances of GPSML,
StarTrackerML, etc.) is explicitly reset. This clears any ac-
cumulated internal biases (b) and resets the hidden states of
the embedded DriftGRU models, ensuring each simulation
run starts from a pristine state.

B. The Time-Stepping Loop

The simulation proceeds iteratively for a total duration (default
600s, or 10 minutes) in fixed time step increments (default 1 s). At
each iteration, the core execution cycle is as follows:

(1) State Propagation (simulator.step_simulation): This
function executes the primary simulation tasks in sequence:

e Orbital Mechanics: Propagates the orbit by At using
the Keplerian two-body solver.

e Sensor Measurement: Iterates through all sensor
models (GPSML, StarTrackerML, etc.), feeding them
the true orbital state (rirye, Virue) and logging the cor-
rupted, measured values, including ML drift and noise.

o FSM Status Update: Based on the latest telemetry
(e.g., soc from the PowerSubsystem and temperature
from
IRSensorML), the OrbitSimulator updates the FSM’s

internal subsystem health status (e.g., Power. status=LOW).

o FSM Step: The FSM executes its transition logic vi
fsm.step(), potentially moving the satellite to a new
operational state (e.g., NOMINAL — LOW_POWER).

o Telemetry Logging: The composite dictionary of the
latest true orbital state, measured sensor values, and
current FSM state is appended to the telemetry_log.

e Event Injection: Predetermined failures can be in-
jected at specific simulation times to test the FSM’s
autonomous response:

— Att =60 s, Power.status is set to LOW to test
the NOMINAL — LOW_POWER transition.

- Att =180 s, Power.status is set back to OK to
test the LOW_POWER — NOMINAL recovery
transition.

e Verbose Output: When verbose=True, a structured
snapshot of key telemetry metrics is printed, including
the FSM state, altitude, geographic position (Latitude/-
Longitude), power statistics, and ADCS sensor errors.

C. Output and Data Structure

The primary output of the simulation is telemetry_log, a list of
dictionaries that captures the complete history of the satellite’s

Deshad Senevirathne

state. This structured data enables post-processing and analysis,
including:
e The accuracy of the navigation solution (by comparing
position, . with gps_measured_position_m).
o The long-term effects of ML-modeled sensor drift.
o The effectiveness of the FSM’s failure response mechanisms.

2.2.12 FastAPI Entry Point and API Definition:
main.py

The main.py module establishes the simulation core as a functional
web service using FastAPIL This layer defines the RESTful interface,
manages data contracts via Pydantic, and executes the primary
simulation logic provided by sim_driver.

A. API Service Definition

The service is initialized as a standard FastAPI application:

app = FastAPI(
title="Sentinode Python Simulation Core",
description="Provides real time telemetry logs via the
orbital simulation",
version="1.0.0",

This metadata enhances the automatically generated documen-
tation (Swagger/OpenAPI), making the service consumable by ex-
ternal systems.

B. Data Contracts (Pydantic Models)

Pydantic models enforce strict validation for incoming requests and
outgoing responses, ensuring the API is robust and predictable.

Request Model (RunSimulationRequest): Defines the parame-
ters required to start a simulation run, mapping directly to sim_driver
inputs:

e altitude_km (float):Initial mean orbital altitude in kilo-
meters (default 600.0 km)

e inclination_deg (float): Orbital inclination in degrees
(default 51.6°)

e duration_s (int): Total simulation duration in seconds
(default 86400 s)

Response Model (SimulationResponse): Defines the structure
of the returned data:

e status (str):Indicates the result of the operation (success
or error)

o telemetry (List[Dict[str,Any]]): Complete log of time-
stamped telemetry generated by run_realtime_simulation

e message (str): Detailed message providing context on
success or failure

C. Health Check Endpoint

The /status endpoint is a simple GET request for service health
monitoring. It reports the service status as up and includes a UTC
timestamp, enabling external load balancers or monitoring tools to
confirm availability.

Sentinode X - Satellite Telemetry Simulator

D. Main Simulation Endpoint: /run-simulation

The core functionality is exposed via a POST request to /run-simul-
ation.
Execution Flow:

(1) Upon receiving a validated request body, the endpoint ex-
tracts altitude_km, inclination_deg, and duration_s.

(2) It invokes the run_realtime_simulation function from
sim_driver.

(3) The verbose flag is set to False to prevent voluminous
console logs during API execution.

(4) Error Handling: The executionis wrappedinatry. . .except

block. Any exceptions raised during orbital propagation,
sensor stepping, or FSM logic are caught, logged, and re-
turned to the client as an error status within the Simulation-
Response model, maintaining a consistent API contract.

This API layer abstracts the complex simulation core behind a
clean, accessible interface, enabling the satellite model to be inte-
grated into broader mission control, visualization, or ground station
software applications.

2.3 API Gateway Implementation:
Node.js/Express

The Node.js/Express API Gateway is a critical infrastructural com-
ponent that acts as the single entry point for all client requests. Its
primary function is to decouple the client (e.g., a web front-end)
from the Python simulation core, providing cross-origin resource
sharing (CORS) support, unified error handling, health monitoring,
and data transformation services (e.g., JSON to CSV).

A. Architectural Role and Configuration

The gateway is built on the Express.js framework and listens on
PORT 3001. Key configuration parameters are shown in Table 3.

B. Health and Status Checks (/api/status)

The health check endpoint performs a cascaded check to ensure
system robustness:

e Gateway Status: Confirms the Node.js service is running.

o Python Service Status: Uses axios.get (PYTHON_BASE_URL
status) to check the Python simulation service.

e Response: Returns status: ’up’ if the Python service is
reachable, or status: ’degraded’ with HTTP 503 if it is
down.

C. Main Telemetry Endpoint (/api/telemetry)

This POST endpoint is the primary interface for initiating short-
duration simulations:

o Parameter Handling: Accepts optional parameters:
altitude_km,inclination_deg,duration_s,local_time
zone. Defaults are provided (e.g.,Duration=600 s,Inclina
tion=51.6°).

o Request Forwarding: Forwards validated parameters to
the Python simulation endpoint via axios. post.

o Error Propagation: Any errors from the Python service
(e.g., HTTP 500) are caught, logged, and propagated back
to the client with appropriate status codes and messages.

D. Data Transformation and CSV Export
(/api/export-csv)

This endpoint facilitates downloading full simulation runs as struc-
tured CSV files:

e Full Simulation Run: Executes a POST request to the
Python service with a longer duration_s than the real-
time endpoint.

e JSON to CSV Conversion: The jsonToCsv utility per-
forms the transformation:

— Dynamically extracts all unique keys from the JSON
telemetry objects for the CSV header.
- Iterates through telemetry log:

* Arrays (e.g., position_km_true) converted to
semicolon-separated strings (x; y; z)formatted
to five decimal places.

* Strings/Numbers inserted directly.

* Complex objects JSON. stringifyed and escaped.

- Applies standard CSV escaping rules.

¢ File Download Response: Sets HTTP headers (Content-
Type: text/csv and Content-Disposition) to instruct
the client to download the CSV. The transformed csvContent
is then sent.

The API Gateway provides a scalable, resilient, and user-friendly
interface to the core Python simulation logic.

2.4 Frontend Interface and Deployment

The Frontend Interface provides a dynamic, browser-based dash-
board for interacting with the simulation core. It is built using
standard web technologies (HTML5, JavaScript) and styled with
Tailwind CSS. The nginx. conf file defines the critical reverse proxy
configuration necessary to route user requests from the browser to
the appropriate backend services.

A. Core Frontend Logic (index.html and
Embedded JavaScript)

The index. html file contains the complete user interface, organized
into two main tabs, and the comprehensive JavaScript logic for
managing the simulation flow and data visualization.

1. Real-Time Telemetry Tab. This tab is designed for short, contin-
uous simulation runs to provide an interactive “mission control”
experience.

e Continuous Fetch Logic (fetchAndStartTelemetry): The
frontend calls the /api/telemetry endpoint (via the Node.js
Gateway) for short-duration blocks (default 60 s) rather
than one long request.

e Per-Second Display Loop: After receiving a data block, a
setInterval(..., 1000) loop iterates through the data,
updating the dashboard metrics every second to mimic a
real-time feed.

e Continuous Operation: When the current data block
finishes, fetchAndStartTelemetry () recursively requests
the next block, allowing indefinite simulation until the user
clicks Stop.

e Data Display (updateTelemetryDisplay): Eight key met-
rics (e.g., FSM State, Altitude, Battery SOC) are displayed

Deshad Senevirathne

Table 3: API Gateway Configuration

Configuration Value Purpose
PYTHON_BASE_URL http://python-sim-service:5001 Internal network address of FastAPI simulator, crucial for Docker deployment
cors() Middleware Enabled Allows external web applications to safely make cross-origin requests
express.json() Enabled Parses incoming JSON request bodies
timeout 60000 ms (60 s) Ensures the gateway waits long enough for computationally intensive simulations

SENTINODE X Simulator

ite Telemetry Simulation and Data Export Interface

Real-Time Telemetry

Simulation Controls

Alt)) ocal Timezone

Simulation Running... Stop

550 J Asia/Colombo

ATE

NOMINAL

BATTERY TEMP

25.0-

Figure 2: Sentinode X frontend display - realtime simulation

Telemetry Log (Real-Time Feed)

| ALT: 549.993 km | Epoch Time: 54:23

| POS | LON: 65.44°Deg | Lat: 51.59°Deg

| PAR | Batt V: 23.60 V | Batt I: @.18 A | Solar I: 1.13 A

| PANR | SOC: 79.93% | Temp: 24.94°C | Solar V: 20.98 V

Figure 3: Sentinode X frontend display - telemetry log

Sentinode X - Satellite Telemetry Simulator

in cards with color coding based on health status (Green
for NOMINAL, Red for low SOC).

e Log Area (updateLog): Detailed, multi-line telemetry en-
tries are appended to a scrollable log area, formatted to
precisely match sim_driver console output, using non-
breaking spaces for alignment.

2. CSV Data Generator Tab. Optimized for long-duration, non-intera-
ctive simulations for data analysis.

o Single Request: generateCSV makes a single POST re-
quest to /api/export-csv with a long duration (e.g., 86400
s).

e CSV Download Handling: The Node.js Gateway returns
raw CSV content with the correct Content-Disposition
header. The frontend converts this into a Blob and pro-
grammatically creates a temporary <a> tag to trigger the
browser’s file download dialog.

B. API Interaction (app. js Logic Moved to
index.html)

e The browser’s built-in fetch API communicates exclusively
with the Node.js API Gateway (/api/telemetry or /api
export-csv).

e Simulation parameters (altitude_km, inclination_deg,
duration_s) are sent as JSON in POST requests.

C. Reverse Proxy Configuration (nginx.conf)

Nginx is the cornerstone of containerized deployment, unifying the
frontend and backend services.

location / {
root /usr/share/nginx/html;
index index.html;
try_files $uri $uri/ /index.html;

This block serves the static frontend assets (index.html and
app. js) when users navigate to the base path (/).

location /api/ {
proxy_pass http://node-api-gateway:3001;
... standard proxy headers

All requests beginning with /api/ (e.g., /api/telemetry) are
routed internally to the Node.js API Gateway (node-api-gateway)
on port 3001. This configuration abstracts internal network loca-
tions from end users.

By utilizing Nginx as the front-facing server, the entire applica-
tion stack—Frontend, API Gateway, and Python Core—is accessible
under a single external entry point.

3 Containerization and Deployment with Docker
Compose

The complete Sentinode X application is designed as a microser-
vices architecture, packaged and deployed using Docker and orches-

trated by Docker Compose. This strategy ensures that all compo-
nents—Python Simulation, Node.js Gateway, and Frontend—run in

isolated, repeatable environments, guaranteeing reliable operation
regardless of the host machine.

3.1 Dockerfile Definitions (Component Isolation)

Three distinct Dockerfiles are used, one for each service layer,
ensuring each container environment is minimal and tailored to its
specific task.

1. Python Simulation Core (Dockerfile.python).

e Base Image: python:3.10-slim, chosen for a lightweight
Python environment.

e Dependency Management: Installs necessary system pack-
ages (git) before running pip install for scientific depen-
dencies (NumPy, poliastro, PyTorch), including packages
fetched via git URLs.

e Execution: Runs the FastAPI application using uvicorn,
exposing port 5001 internally.

2. Node.js APl Gateway (Dockerfile.node).

e Base Image: node: 18-alpine, a minimal Node.js environ-
ment.

¢ Dependency Management: Copies package. json first
to leverage Docker build cache, followed by npm install.

e Execution: Starts the Express server using npm start,
exposing port 3001 internally.

3. Frontend (Dockerfile.frontend).

e BaseImage: nginx:alpine, ahigh-performance web server.

e Configuration: Copies compiled frontend assets (index. html,
app.js, ...)and nginx.conf, configuring the reverse
proxy for the /api/ route.

o Execution: Serves the frontend on port 80.

3.2 Docker Compose Configuration
(docker-compose. yml)

The docker-compose. yml file defines how the three services are
built, linked, and run together.

Key Features of the Compose File.

e Shared Network (sentinode_net): All services are con-
nected to a single bridge network. This allows the Node.js
gateway to reference the Python service by name (python-sim-
service:5001), critical for inter-container communication.

o depends_on: Ensures the Node.js gateway waits for the
Python service, and the frontend waits for the Node.js gate-
way to start.

e Port Mapping: Only the Frontend maps port 80 to the
host, making the application accessible via a single URL
(e.g.,http://localhost). Other ports are exposed for mon-
itoring/debugging.

4 Conclusion

The development of the Sentinode X framework successfully achieved
its primary objective: to create a robust, end-to-end digital model
that seamlessly integrates complex orbital physics, machine learning-
driven sensor behaviors, autonomous command-and-control logic,

Satellite Telemetry Simulation and Data Export Interface

CSV Data Generator

Generate CSV Export

Define simulation paramet

(ki)

Inclination (deg)

51.6

Figure 4: Sentinode X frontend display - CSV generator

Deshad Senevirathne

Local Timezone

Asia/Colombo

Generate CSV & Download

Table 4: Sample telemetry data generated by Sentinode X CSV generator

Parameter Step 1 Step 2 Step 3
time_s 1 2 3
timestamp_utc 2025-10-16T07:06:48.021Z 2025-10-16T07:06:49.021Z 2025-10-16T07:06:50.021Z
position_km_true | -7.55800; 4334.44900; 5468.71400 | -15.11600; 4334.44200; 5468.70400 | -22.67400; 4334.42900; 5468.68800
altitude_km 599.997 599.997 599.997
latitude_deg 51.6 51.6 51.6
longitude_deg 65.042 65.142 65.242
inclination_deg 51.6 51.6 51.6
gps_error_m 10.31 9.23 10.27
ir_temp_measured 34.96 35.06 34.99
SNR_dB 19.860 19.543 19.451
battery_voltage 23.600 23.600 23.600
battery_current 0.286 -0.079 0.0293
battery_temp 25.090 25.079 25.018
soc 0.800 0.800 0.800
fsm_state NOMINAL NOMINAL NOMINAL
Table 5: Docker Compose Service Configuration
Service Name Image/Build Internal Port External Port Dependencies
python-sim-service | ./python-sim-service 5001 5001 (Debug) None
node-api-gateway | ./node-api-gateway 3001 3001 (Debug) python-sim-service
frontend /frontend 80 80 (External Access) | node-api-gateway

and a scalable web interface. This system is a functional microser-
vices architecture capable of simulating an entire mission profile
from initial orbit insertion through dynamic failure and recovery

cycles.

Effectiveness

4.1 Architectural Triumphs and Implementation

The strength of this solution lies in its strict adherence to the prin-

ciple of separation of concerns.

Scientific Integrity and Autonomy. The core python-sim-service
encapsulates the high-fidelity scientific models. The Orbit Simulator

Sentinode X - Satellite Telemetry Simulator

provides the ground truth, corrupted by ML-driven sensor models
to reflect real-world drift and noise—a critical step beyond purely de-
terministic simulations. Crucially, the Satellite Finite State Machine
(SatelliteFSM) dictates the spacecraft’s autonomous response, en-
suring that mission-critical decisions (like entering SAFE_MODE) are
based solely on simulated, noisy telemetry data, providing a true
test of mission logic.

Scalable Interface and Decoupling. The architecture benefits sig-
nificantly from the Node.js API Gateway. By acting as the sole
intermediary, it successfully decouples the client from the compute-
intensive Python core. The gateway simplifies essential operational
tasks, such as translating lengthy JSON telemetry logs into ex-
portable CSV files and managing the flow control necessary to em-
ulate a continuous, real-time telemetry stream for the dashboard.
This choice ensures the scientific processing can remain performant
without being burdened by typical web server overhead.

Enterprise-Ready Deployment. The use of Docker and Docker
Compose transforms the entire application from a collection of
scripts into a deployable product. The nginx.conf file acts as the
intelligent traffic cop, routing client requests to the correct internal
container (node-api-gateway), while the docker-compose.yml
guarantees network connectivity and dependency management
across the three distinct environments (Python, Node.js, Nginx).
This containerization effort makes the entire platform inherently
resilient and highly portable.

5 The Path Forward: Enhancing Fidelity and State

While the current implementation is complete, future development
should focus on transforming the current execution model into a
true digital twin environment.

Persistence and Statefulness. The current API is transactional; it
runs the simulation, returns the log, and resets. The next evolution-
ary step is to convert the Python core into a long-lived, stateful
service. This would allow multiple external users to subscribe to
the same continuously running simulation instance, enabling inter-
active control inputs (e.g., commanding an ADCS maneuver) that
affect the orbital state in real time.

Advanced FSM Condition Parsing. A known limitation is the
fragility of the _eval_condition method in SatelliteFSM. We
intend to replace the current simple string parser with a more ro-
bust, expression-based evaluation engine to reliably handle complex
logical operators (A, V, >, <) and variable combinations.

Interactive Visualization. The current frontend provides raw nu-
merical readouts. Enhancing the dashboard with dynamic charting
capabilities (e.g., plotting the long-term divergence of true vs. mea-
sured position, visualizing the power State of Charge trend, and
displaying the orbit path over a map) will unlock the full analytical
potential of the generated telemetry.

5.1 Future Work and Digital Twin Evolution

The Sentinode X platform, having established a solid microservices
foundation for satellite simulation, is now poised for an essential
architectural evolution. The future work outlined below aims to
transition the framework from a transactional telemetry generator

into a fully interactive, stateful digital twin, thereby maximizing
its utility for mission design, operator training, and autonomous
control system verification.

5.2 The Stateful and Interactive Revolution

The most significant change will involve migrating the core sim-
ulation service from a short-lived API process to a long-running,
persistent service that maintains state across user requests.

5.3 The Spatial and Analytical Leap (3D
Visualization)

Enhancing the frontend visualization is critical for operational
awareness, allowing users to move beyond abstract numbers to a
spatial understanding of the mission.

1. Immersive 3D Spatial Context. The introduction of Three.js
will establish a dedicated 3D Visualization Tab. This environment
will dynamically render the simulated world:

e Earth Model and Illumination: A correctly scaled Earth,
complete with visual textures and a dynamic lighting model
that accurately simulates the day/night terminator based
on the simulation epoch. This visually cues the spacecraft’s
power generation status.

e Orbital and Attitude Fidelity: The real-time position vec-
tors (rgcy) received from the telemetry stream will drive the
location of the satellite model, while the Attitude Quater-
nion (g) will correctly rotate the satellite asset, showing
its precise orientation in space. The full ephemeris will be
plotted as a persistent orbital path trace.

2. Dual Coordinate System Overlay. To satisfy diverse mission re-
quirements, the dashboard will display position information across
two concurrent reference frames:

o Spatial (ECI) Coordinates: The raw, non-rotating X, Y,
Z vector, which is crucial for analyzing the fundamental
physics and orbital maneuvers.

e Geographic (Lat/Lon) Coordinates: The instantaneous
latitude, longitude, and altitude of the spacecraft, which is
essential for determining ground station contact windows
and identifying payload targets. This display will also in-
clude the dynamic Ground Trace, showing the satellite’s
path projected onto the Earth’s surface.

3. Analytical Data Enhancement. Beyond the 3D view, the plat-
form’s analytical utility will be expanded:

e Time-Series Charting: Integrate an analytical library (e.g.,
Chart.js) to provide dynamic plots of critical metrics over
the duration of the simulation, essential for analyzing trends
such as battery State of Charge, thermal cycles, and the per-
formance (drift) of the GPSML and StarTrackerML models.

e CSV Decimation: The /api/export-csv endpoint will be
modified to accept a decimation parameter, allowing users
to request data at a lower resolution (e.g., one log per
minute) for extremely long (years-long) simulation runs,
thus managing data volume for post-processing.

Deshad Senevirathne

Table 6: Planned Enhancements: Transactional vs. Stateful Simulation

Current State

tional)

(Transac-

Proposed Enhancement (Stateful)

Impact on Mission Control

Restart on Request: Each /run-
simulation call initializes and re-
sets the orbit.

Persistent State Engine: Deploy the
python-sim-service to run a continu-
ous, authoritative time loop, exposing
the state via WebSockets or a Message
Queue (e.g., Kafka).

Enables a true multi-client, collabora-
tive mission environment where all
users observe the same, single source
of truth simultaneously.

Hardcoded Events: Failures are
predetermined by simulation
time in sim_driver.

Dynamic Command Injection: Intro-
duce a new /api/command endpoint
to receive structured user inputs (e.g.,
"Trigger: Heater Failure, Severity: CRIT-
ICAL").

Transforms the system into an active
training simulator, allowing operators
to test system resilience against unfore-
seen events in real time.

Simple FSM Conditions: Logic
relies on basic == comparison.

Advanced Condition Parser: Refactor
the SatelliteFSM’s _eval_condition
to use a safe expression evaluator ca-
pable of handling complex boolean
logic, such as: Thermal.temp>80 A

Allows for the implementation of mis-
sion rules with high fidelity, prevent-
ing nuisance trips and improving oper-
ational efficiency.

Power.S0C<@. 25

This comprehensive set of future work items will successfully
evolve Sentinode X into a high-fidelity, interactive, and indispens-
able Mission Visualization and Control Testbed.

Acknowledgments

I express my deepest gratitude to Dr. Sisira K. Amarasinghe for
giving me the inspiration to commit to complete this project. The
authors also thank Shalutha Rajapakshe, Deepak Tulsani, Thilini
Deshika, and Achinthi Chamalee for their insightful discussions,
technical support, and encouragement.

Finally, I wish to acknowledge my beloved parents, Mr. M. L.
R. Senevirathne and Mrs. M. M. W. N. Senevirathne, my beloved
sister Ms. M. K. W. Senevirathne for their unwavering support,
inspiration, and belief in my abilities, which has been a constant
source of motivation throughout this endeavor.

References

[1] W. Astropy Collaboration et al. 2013. Astropy: a community Python package
for astronomy. Astronomy Astrophysics 558 (2013), A33. doi:10.1051/0004-6361/
201322068

[2] S.Li Y. Qi, and K. Song. 2025. An Overview of GEO Satellite Communication Sim-
ulation Systems. Electronics 14, 13 (2025), 2715. doi:10.3390/electronics14132715

[3] M. Mosleh, K. Dalili, and B. Heydari. 2018. Distributed or Monolithic? A Com-
putational Architecture Decision Framework. IEEE Systems Journal 12, 1 (March
2018), 125-136. doi:10.1109/JSYST.2016.2594290

[4] Oyekunle Claudius Oyeniran, Adebunmi Okechukwu Adewusi, Adams Gbola-
han Adeleke, Lucy Anthony Akwawa, and Chidimma Francisca Azubuko. 2024.
Microservices Architecture in Cloud-Native Applications: Design Patterns and
Scalability. International Journal of Advanced Research and Interdisciplinary Scien-
tific Endeavours 1, 2 (2024), 92-106. doi:10.61359/11.2206-2409

[5] Juan Luis Cano Rodriguez, Helge Eichhorn, and Frazer McLean. 2016. Poliastro:
An Astrodynamics Library Written in Python with Fortran Performance. In 6th
International Conference on Astrodynamics Tools and Techniques.

https://doi.org/10.1051/0004-6361/201322068
https://doi.org/10.1051/0004-6361/201322068
https://doi.org/10.3390/electronics14132715
https://doi.org/10.1109/JSYST.2016.2594290
https://doi.org/10.61359/11.2206-2409

	Abstract
	1 Introduction
	2 System Architecture
	2.1 Architecture Overview

	Acknowledgments
	References

